半導(dǎo)體激光器的發(fā)展過(guò)程
在1962年7月召開(kāi)的固體器件研究國(guó)際會(huì)議上,美國(guó)麻省理工學(xué)院林肯實(shí)驗(yàn)室的兩名學(xué)者克耶斯(Keyes)和奎斯特(Quist)報(bào)告了砷化鎵材料的光發(fā)射現(xiàn)象,這引起通用電氣研究實(shí)驗(yàn)室工程師哈爾(Hall)的極大興趣,在會(huì)后回家的火車上他寫(xiě)下了有關(guān)數(shù)據(jù)?;氐郊液螅柫⒓粗贫搜兄瓢雽?dǎo)體激光器的計(jì)劃,并與其他研究人員一道,經(jīng)數(shù)周奮斗,他們的計(jì)劃獲得成功。
像晶體二極管一樣,半導(dǎo)體激光器也以材料的p-n結(jié)特性為基礎(chǔ),且外觀亦與前者類似,因此,半導(dǎo)體激光器常被稱為二極管激光器或激光二極管。 早期的激光二極管有很多實(shí)際限制,例如,只能在77K低溫下以微秒脈沖工作,過(guò)了8年多時(shí)間,才由貝爾實(shí)驗(yàn)室和列寧格勒(圣彼得堡)約飛(Ioffe)物理研究所制造出能在室溫下工作的連續(xù)器件。而足夠可靠的半導(dǎo)體激光器則直到70年代中期才出現(xiàn)。
半導(dǎo)體激光器體積非常小,最小的只有米粒那樣大。工作波長(zhǎng)依賴于激光材料,一般為0.6~1.55微米,由于多種應(yīng)用的需要,更短波長(zhǎng)的器件在發(fā)展中。據(jù)報(bào)導(dǎo),以Ⅱ~Ⅳ價(jià)元素的化合物,如ZnSe為工作物質(zhì)的激光器,低溫下已得到0.46微米的輸出,而波長(zhǎng)0.50~0.51微米的室溫連續(xù)器件輸出功率已達(dá)10毫瓦以上。但迄今尚未實(shí)現(xiàn)商品化。
光纖通信是半導(dǎo)體激光可預(yù)見(jiàn)的最重要的應(yīng)用領(lǐng)域,一方面是世界范圍的遠(yuǎn)距離海底光纖通信,另一方面則是各種地區(qū)網(wǎng)。后者包括高速計(jì)算機(jī)網(wǎng)、航空電子系統(tǒng)、衛(wèi)生通訊網(wǎng)、高清晰度閉路電視網(wǎng)等。但就而言,激光唱機(jī)是這類器件的最大市場(chǎng)。其他應(yīng)用包括高速打印、自由空間光通信、固體激光泵浦源、激光指示,及各種醫(yī)療應(yīng)用等。
20世紀(jì)60年代初期的半導(dǎo)體激光器是同質(zhì)結(jié)型激光器,它是在一種材料上制作的pn結(jié)二極管在正向大電流注人下,電子不斷地向p區(qū)注人,空穴不斷地向n區(qū)注人.于是,在原來(lái)的pn結(jié)耗盡區(qū)內(nèi)實(shí)現(xiàn)了載流子分布的反轉(zhuǎn),由于電子的遷移速度比空穴的遷移速度快,在有源區(qū)發(fā)生輻射、復(fù)合,發(fā)射出熒光,在一定的條件下發(fā)生激光,這是一種只能以脈沖形式工作的半導(dǎo)體激光器。 半導(dǎo)體激光器發(fā)展的第二階段是異質(zhì)結(jié)構(gòu)半導(dǎo)體激光器,它是由兩種不同帶隙的半導(dǎo)體材料薄層,如GaAs,GaAlAs所組成,最先出現(xiàn)的是單異質(zhì)結(jié)構(gòu)激光器(1969年).單異質(zhì)結(jié)注人型激光器(SHLD)是利用異質(zhì)結(jié)提供的勢(shì)壘把注入電子限制在GaAsP一N結(jié)的P區(qū)之內(nèi),以此來(lái)降低閥值電流密度,其數(shù)值比同質(zhì)結(jié)激光器降低了一個(gè)數(shù)量級(jí),但單異質(zhì)結(jié)激光器仍不能在室溫下連續(xù)工作。
1970年,實(shí)現(xiàn)了激光波長(zhǎng)為9000Å:室溫連續(xù)工作的雙異質(zhì)結(jié)GaAs-GaAlAs(砷化鎵一鎵鋁砷)激光器。雙異質(zhì)結(jié)激光器(DHL)的誕生使可用波段不斷拓寬,線寬和調(diào)諧性能逐步提高。其結(jié)構(gòu)的特點(diǎn)是在P型和n型材料之間生長(zhǎng)了僅有0. 2 Eam厚,不摻雜的,具有較窄能隙材料的一個(gè)薄層,因此注人的載流子被限制在該區(qū)域內(nèi)(有源區(qū)),因而注人較少的電流就可以實(shí)現(xiàn)載流子數(shù)的反轉(zhuǎn)。在半導(dǎo)體激光器件中,比較成熟、性能較好、應(yīng)用較廣的是具有雙異質(zhì)結(jié)構(gòu)的電注人式GaAs二極管激光器。
隨著異質(zhì)結(jié)激光器的研究發(fā)展,人們想到如果將超薄膜(< 20nm)的半導(dǎo)體層作為激光器的激括層,以致于能夠產(chǎn)生量子效應(yīng),結(jié)果會(huì)是怎么樣?再加之由于MBE,MOCVD技術(shù)的成就。于是,在1978年出現(xiàn)了世界上第一只半導(dǎo)體量子阱激光器(QWL),它大幅度地提高了半導(dǎo)體激光器的各種性能.后來(lái),又由于MOCVD,MBE生長(zhǎng)技術(shù)的成熟,能生長(zhǎng)出高質(zhì)量超精細(xì)薄層材料,之后,便成功地研制出了性能更加良好的量子阱激光器,量子阱半導(dǎo)體激光器與雙異質(zhì)結(jié)(DH)激光器相比,具有闌值電流低、輸出功率高,頻率響應(yīng)好,光譜線窄和溫度穩(wěn)定性好和較高的電光轉(zhuǎn)換效率等許多優(yōu)點(diǎn)。
QWL在結(jié)構(gòu)上的特點(diǎn)是它的有源區(qū)是由多個(gè)或單個(gè)阱寬約為100人的勢(shì)阱所組成,由于勢(shì)阱寬度小于材料中電子的德布羅意波的波長(zhǎng),產(chǎn)生了量子效應(yīng),連續(xù)的能帶分裂為子能級(jí).因此,特別有利于載流子的有效填充,所需要的激射閱值電流特別低.半導(dǎo)體激光器的結(jié)構(gòu)中應(yīng)用的主要是單、多量子阱,單量子阱(SQW)激光器的結(jié)構(gòu)基本上就是把普通雙異質(zhì)結(jié)(DH)激光器的有源層厚度做成數(shù)十nm以下的一種激光器,通常把勢(shì)壘較厚以致于相鄰勢(shì)阱中電子波函數(shù)不發(fā)生交迭的周期結(jié)構(gòu)稱為多量子阱(MQW ).量子阱激光器單個(gè)輸出功率現(xiàn)已大于1w,承受的功率密度已達(dá)l OMW/cm3以上)而為了得到更大的輸出功率,通常可以把許多單個(gè)半導(dǎo)體激光器組合在一起形成半導(dǎo)體激光器列陣。因此,量子阱激光器當(dāng)采用陣列式集成結(jié)構(gòu)時(shí),輸出功率則可達(dá)到l00w以上.高功率半導(dǎo)體激光器(特別是陣列器件)飛速發(fā)展,已經(jīng)推出的產(chǎn)品有連續(xù)輸出功率5 W,10W,20W和30W的激光器陣列.脈沖工作的半導(dǎo)體激光器峰值輸出功率50w. 120W和1500W的陣列也已經(jīng)商品化.一個(gè)4. 5 cm x 9cm的二維陣列,其峰值輸出功率已經(jīng)超過(guò)45kW.峰值輸出功率為350kW的二維陣列也已間世。 從20世紀(jì)70年代末開(kāi)始,半導(dǎo)體激光器明顯向著兩個(gè)方向發(fā)展,一類是以傳遞信息為目的的信息型激光器.另一類是以提高光功率為目的的功率型激光器.在泵浦固體激光器等應(yīng)用的推動(dòng)下,高功率半導(dǎo)體激光器(連續(xù)輸出功率在100W 以上,脈沖輸出功率在5W以上,均可稱之謂高功率半導(dǎo)體激光器)在20世紀(jì)90年代取得了突破性進(jìn)展,其標(biāo)志是半導(dǎo)體激光器的輸出功率顯著增加,國(guó)外千瓦級(jí)的高功率半導(dǎo)體激光器已經(jīng)商品化,國(guó)內(nèi)樣品器件輸出已達(dá)到600W[61.如果從激光波段的被擴(kuò)展的角度來(lái)看,先是紅外半導(dǎo)體激光器,接著是670nm紅光半導(dǎo)體激光器大量進(jìn)入應(yīng)用,接著,波長(zhǎng)為650nm,635nm的問(wèn)世,藍(lán)綠光、藍(lán)光半導(dǎo)體激光器也相繼研制成功,10mw量級(jí)的紫光乃至紫外光半導(dǎo)體激光器,也在加緊研制中[a}為適應(yīng)各種應(yīng)用而發(fā)展起來(lái)的半導(dǎo)體激光器還有可調(diào)諧半導(dǎo)體激光器,電子束激勵(lì)半導(dǎo)體激光器以及作為“集成光路”的最好光源的分布反饋激光器(DFB一LD),分布布喇格反射式激光器(DBR一LD)和集成雙波導(dǎo)激光器.另外,還有高功率無(wú)鋁激光器(從半導(dǎo)體激光器中除去鋁,以獲得更高輸出功率,更長(zhǎng)壽命和更低造價(jià)的管子)、中紅外半導(dǎo)體激光器和量子級(jí)聯(lián)激光器等等.其中,可調(diào)諧半導(dǎo)體激光器是通過(guò)外加的電場(chǎng)、磁場(chǎng)、溫度、壓力、摻雜盆等改變激光的波長(zhǎng),可以很方便地對(duì)輸出光束進(jìn)行調(diào)制.分布反饋(DF)式半導(dǎo)體激光器是伴隨光纖通信和集成光學(xué)回路的發(fā)展而出現(xiàn)的,它于1991年研制成功,分布反饋式半導(dǎo)體激光器完全實(shí)現(xiàn)了單縱模運(yùn)作,在相干技術(shù)領(lǐng)域中又開(kāi)辟了巨大的應(yīng)用前景它是一種無(wú)腔行波激光器,激光振蕩是由周期結(jié)構(gòu)(或衍射光柵)形成光藕合提供的,不再由解理面構(gòu)成的諧振腔來(lái)提供反饋,優(yōu)點(diǎn)是易于獲得單模單頻輸出,容易與纖維光纜、調(diào)制器等耦合,特別適宜作集成光路的光源。
單極性注入的半導(dǎo)體激光器是利用在導(dǎo)帶內(nèi)(或價(jià)帶內(nèi))子能級(jí)間的熱電子光躍遷以實(shí)現(xiàn)受激光發(fā)射,自然要使導(dǎo)帶和價(jià)帶內(nèi)存在子能級(jí)或子能帶,這就必須采用量子阱結(jié)構(gòu).單極性注入激光器能獲得大的光功率輸出,是一種商效率和超商速響應(yīng)的半導(dǎo)體激光器,并對(duì)發(fā)展硅基激光器及短波激光器很有利.量子級(jí)聯(lián)激光器的發(fā)明大大簡(jiǎn)化了在中紅外到遠(yuǎn)紅外這樣寬波長(zhǎng)范圍內(nèi)產(chǎn)生特定波長(zhǎng)激光的途徑.它只用同一種材料,根據(jù)層的厚度不同就能得到上述波長(zhǎng)范圍內(nèi)的各種波長(zhǎng)的激光.同傳統(tǒng)半導(dǎo)體激光器相比,這種激光器不需冷卻系統(tǒng),可以在室溫下穩(wěn)定操作.低維(量子線和量子點(diǎn))激光器的研究發(fā)展也很快,日本okayama的GaInAsP/Inp長(zhǎng)波長(zhǎng)量子線(Qw+)激光器已做到9OkCW工作條件下Im =6.A,l =37A/cm2并有很高的量子效率.眾多科研單位正在研制自組裝量子點(diǎn)(QD)激光器,該QDLD已具有了高密度,高均勻性和高發(fā)射功率.由于實(shí)際需要,半導(dǎo)體激光器的發(fā)展主要是圍繞著降低闊值電流密度、延長(zhǎng)工作壽命、實(shí)現(xiàn)室溫連續(xù)工作,以及獲得單模、單頻、窄線寬和發(fā)展各種不同激射波長(zhǎng)的器件進(jìn)行的。 20世紀(jì)90年代出現(xiàn)并特別值得一提的是面發(fā)射激光器(SEL),早在1977年,人們就提出了所謂的面發(fā)射激光器,并于1979年做出了第一個(gè)器件,1987年做出了用光泵浦的780nm的面發(fā)射激光器.1998年GaInAIP/GaA。面發(fā)射激光器在室溫下達(dá)到亞毫安的網(wǎng)電流,8mW的輸出功率和11%的轉(zhuǎn)換效率[2)前面談到的半導(dǎo)體激光器,從腔體結(jié)構(gòu)上來(lái)說(shuō),不論是F一P(法布里一泊羅)腔或是DBR(分布布拉格反射式)腔,激光輸出都是在水平方向,統(tǒng)稱為水平腔結(jié)構(gòu).它們都是沿著襯底片的平行方向出光的.而面發(fā)射激光器卻是在芯片上下表面鍍上反射膜構(gòu)成了垂直方向的F一P腔,光輸出沿著垂直于襯底片的方向發(fā)出,垂直腔面發(fā)射半導(dǎo)體激光器(VCSELS)是一種新型的量子阱激光器,它的激射闊值電流低,輸出光的方向性好,藕合效率高,通過(guò)陣列化分布能得到相當(dāng)強(qiáng)的光功率輸出,垂直腔面發(fā)射激光器已實(shí)現(xiàn)了工作溫度最高達(dá)71℃。另外,垂直腔面發(fā)射激光器還具有兩個(gè)不穩(wěn)定的互相垂直的偏振橫模輸出,即x模和y模,對(duì)偏振開(kāi)關(guān)和偏振雙穩(wěn)特性的研究也進(jìn)入到了一個(gè)新階段,人們可以通過(guò)改變光反饋、光電反饋、光注入、注入電流等等因素實(shí)現(xiàn)對(duì)偏振態(tài)的控制,在光開(kāi)關(guān)和光邏輯器件領(lǐng)域獲得新的進(jìn)展。20世紀(jì)90年代末,面發(fā)射激光器和垂直腔面發(fā)射激光器得到了迅速的發(fā)展,且已考慮了在超并行光電子學(xué)中的多種應(yīng)用.980mn,850nm和780nm的器件在光學(xué)系統(tǒng)中已經(jīng)實(shí)用化.垂直腔面發(fā)射激光器已用于千兆位以太網(wǎng)的高速網(wǎng)絡(luò)。為了滿足21世紀(jì)信息傳輸寬帶化、信息處理高速化、信息存儲(chǔ)大容量以及軍用裝備小型、高精度化等需要,半導(dǎo)體激光器的發(fā)展趨勢(shì)主要在高速寬帶LD、大功率ID,短波長(zhǎng)LD,盆子線和量子點(diǎn)激光器、中紅外LD等方面.在這些方面取得了一系列重大的成果。